РЕГИОНАЛЬНАЯ ОБЩЕСТВЕННАЯ ОРГАНИЗАЦИЯ
ОБЪЕДИНЕНИЕ МНОГОДЕТНЫХ, МАЛООБЕСПЕЧЕННЫХ
СЕМЕЙ И СЕМЕЙ С ДЕТЬМИ-ИНВАЛИДАМИ
«МНОГО ДЕТСТВА»

Применение бактериофагов в медицине


Бактериофаги

   Бактериофа́ги (фаги) (от φᾰγω — «пожираю») — вирусы, избирательно поражающие бактериальные клетки. Чаще всего бактериофаги размножаются внутри бактерий и вызывают их лизис. Бактериофаг состоит из белковой оболочки и генетического материала нуклеиновой кислоты. Бактериофаги представляют собой наиболее многочисленную, широко распространенную в биосфере и, предположительно, наиболее эволюционно древнюю группу вирусов. В природных условиях фаги встречаются в тех местах, где есть чувствительные к ним бактерии. Чем богаче тот или иной субстрат (почва, выделения человека и животных, вода и т. д.) микроорганизмами, тем в большем количестве в нём встречаются соответствующие фаги. Бактериофаги выполняют важную роль в контроле численности микробных популяций, в автолизе стареющих клеток, в переносе бактериальных генов. Бактериофаги представляют собой один из основных подвижных генетических элементов. Посредством трансдукции они привносят в бактериальный геном новые гены. Было подсчитано, что за 1 секунду могут быть инфицированы 1024 бактерий. Это означает, что постоянный перенос генетического материала распределяется между бактериями, обитающими в сходных условиях.

   Бактериофаги различаются по химической структуре, типу нуклеиновой кислоты, морфологии и характеру взаимодействия с бактериями. По размеру бактериальные вирусы в сотни и тысячи раз меньше микробных клеток. Типичная фаговая частица состоит из головки и хвоста. Длина хвоста обычно в 2 — 4 раза больше диаметра головки. Фаги, как и все вирусы, являются абсолютными внутриклеточными паразитами. Хотя они переносят всю информацию для запуска собственной репродукции в соответствующем хозяине, у них отсутствуют механизмы для выработки энергии и рибосомы для синтеза белка.

   Первоначально бактериофаги прикрепляются к фагоспецифическим рецепторам на поверхности бактериальной клетки. Хвост фага с помощью ферментов, находящихся на его конце, локально растворяет оболочку клетки, сокращается и содержащаяся в головке ДНК инъецируется в клетку, при этом белковая оболочка бактериофага остается снаружи. Продолжительность этого процесса может составлять от нескольких минут до нескольких часов. Затем происходит лизис клетки, и освобождаются новые зрелые бактериофаги. Иногда фаг инициирует лизирующий цикл, что приводит к лизису клетки и освобождению новых фагов. Таким образом, вирусный геном реплицируется синхронно с ДНК хозяина и делением клетки, а подобное состояние фага называется профагом. Бактерия, содержащая профаг, становится лизогенной до тех пор, пока при определенных условиях или спонтанно профаг не будет стимулирован на осуществление лизирующего цикла репликации.

Применение бактериофагов в медицине

   Одной из областей использования бактериофагов является антибактериальная терапия, альтернативная приёму антибиотиков. Например, применяются бактериофаги: стрептококковый, стафилококковый, клебсиеллёзный, дизентерийный поливалентный, пиобактериофаг, коли, протейный и колипротейный и другие. Бактериофаги применяются также в генной инженерии в качестве векторов, переносящих участки ДНК, возможна также естественная передача генов между бактериями посредством некоторых фагов (трансдукция). Фаговые векторы обычно создают на базе умеренного бактериофага λ, содержащего ДНК. Размножение бактериофага возможно только в живых клетках. Бактериофаги могут быть использованы для определения жизнеспособности бактерий. Данное направление имеет большие перспективы, поскольку, одним из основных вопросов при разных биотехнологических процессах является определение жизнеспособности используемых культур. С помощью метода электрооптического анализа клеточных суспензий была показана возможность изучения этапов взаимодействия бактериофагов и микроорганизмов.

«Фагодерм»

   В компании НПЦ «МикроМир» разработан комбинированный фаговый препарат «Фагодерм»(подробнее о препаратах), предназначенный для профилактики и лечения гнойно-воспалительных осложнений в хирургии и раневых инфекций, вызванных патогеными штаммами.

   Препарат выпускается в гелевой и лиофильно-высушенной формах. Гелевый препарат применяется в виде аппликаций на пораженный участок кожи, слизистой, подкожной клетчатки 1-2 раза в день до выздоровления. Можно наносить препарат на перевязочный материал. Не желательно применять препарат совместно с мазевыми препаратами.

   Лиофильно-высушенный препарат готовится непосредственно перед употреблением: во флакон с лиофильно-высушенным препаратом вносится 1 мл стерильного физиологического раствора, содержимое флакона тщательно взбалтывается; приготовленный прозрачный раствор добавляют в 50 мл стерильного физиологического раствора, который используют для промываний, дренажей и аппликаций.

   Препарат не имеет противопоказаний и побочных эффектов. Хранить при температуре +4ºС.

Препарат применяется для профилактики и лечения следующих заболеваний кожи и слизистых:

   Препарат с бактериофагами устраняет зуд кожи. При обработке подмышечных областей и ног препарат устраняет неприятный запах на длительное время. «Фагодерм» является эффективным профилактическим средством в личной гигиене (обработка рук, мочеполовых органов, ректальной области при геморрое).

stemcellbank.spb.ru

Бактериофаги в медицине

Константин Мирошников, «Популярная механика» № 10-2013

У всех существ, обитающих на земле, есть микроскопические паразиты – вирусы. Есть свои вирусы и у бактерий. Цикл размножения бактериальных вирусов неизбежно заканчивается гибелью микроба. Чтобы подчеркнуть такую особенность, один из первооткрывателей этого эффекта, Феликс Д’Эрель, придумал специальное название – «бактериофаги», в переводе с греческого – «пожиратели бактерий».

Фотография, сделанная с помощью электронного микроскопа, показывает процесс закрепления бактериофагов (колифагов T1) на поверхности бактерии E. coli.

В конце ХХ века стало ясно, что бактерии безусловно доминируют в биосфере Земли, составляя более 90% ее биомассы. У каждого вида имеется множество специализированных типов вирусов. По предварительным оценкам, число видов бактериофагов составляет около 1015. Чтобы понять масштаб этой цифры, можно сказать, что если каждый человек на Земле будет каждый день открывать по одному новому бактериофагу, то на описание всех их понадобится 30 лет.

Таким образом, бактериофаги – самые малоизученные существа в нашей биосфере. Большинство известных сегодня бактериофагов принадлежит к отряду Caudovirales – хвостатые вирусы. Их частицы имеют размер от 50 до 200 нм. Хвост разной длины и формы обеспечивает присоединение вируса к поверхности бактерии-хозяина, головка (капсид) служит хранилищем для генома. Геномная ДНК кодирует структурные белки, формирующие «тело» бактериофага, и белки, которые обеспечивают размножение фага внутри клетки в процессе инфекции.

Можно сказать, что бактериофаг – это природный высокотехнологичный нанообъект. Например, хвосты фагов представляют собой «молекулярный шприц», который протыкает стенку бактерии и, сокращаясь, впрыскивает свою ДНК внутрь клетки. С этого момента начинается инфекционный цикл. Его дальнейшие этапы состоят из переключения механизмов жизнедеятельности бактерии на обслуживание бактериофага, размножение его генома, построение множества копий вирусных оболочек, упаковки в них ДНК вируса и, наконец, разрушение (лизис) хозяйской клетки.

Бактериофаг – это не живое существо, а молекулярный наномеханизм, созданный природой. Хвост бактериофага – шприц, который протыкает стенку бактерии и впрыскивает вирусную ДНК,

которая хранится в головке (капсиде), внутрь клетки

.

У каждого этапа существует множество нюансов, имеющих глубокий эволюционный и экологический смысл. Ведь бактерии и их вирусные паразиты сосуществуют сотни миллионов, если не миллиарды лет. И эта борьба за выживание не закончилась ни тотальным уничтожением одноклеточных, ни приобретением тотальной устойчивости к фагам и бесконтрольным размножением бактерий.

Помимо постоянного эволюционного соревнования механизмов защиты у бактерий и нападения у вирусов, причиной сложившегося равновесия можно считать и то, что бактериофаги специализировались по своему инфекционному действию. Если имеется крупная колония бактерий, где своих жертв найдут и следующие поколения фагов, то уничтожение бактерий литическими (убивающими, дословно – растворяющими) фагами идет быстро и непрерывно.

Если потенциальных жертв маловато или внешние условия не слишком подходят для эффективного размножения фагов, то преимущество получают фаги с лизогенным циклом развития. В этом случае после внедрения внутрь бактерии ДНК фага не сразу запускает механизм инфекции, а до поры до времени существует внутри клетки в пассивном состоянии, зачастую внедряясь в бактериальный геном.

В таком состоянии профага вирус может существовать долго, проходя вместе с хромосомой бактерии циклы деления клетки. И лишь когда бактерия попадает в благоприятную для размножения среду, активируется литический цикл инфекции. При этом, когда ДНК фага освобождается из бактериальной хромосомы, часто захватываются и соседние участки бактериального генома, а их содержимое в дальнейшем может перенестись в следующую бактерию, которую заразит бактериофаг. Этот процесс (трансдукция генов) считается важнейшим средством переноса информации между прокариотами – организмами без клеточных ядер.

Как действует бактериофаг

Все эти молекулярные тонкости не были известны во втором десятилетии ХХ века, когда были открыты «невидимые инфекционные агенты, уничтожающие бактерий». Но и без электронного микроскопа, с помощью которого в конце 1940-х впервые удалось получить изображения бактериофагов, было понятно, что они способны уничтожать бактерии, в том числе и болезнетворные. Это свойство было незамедлительно востребовано медициной.

Первые попытки лечения фагами дизентерии, раневых инфекций, холеры, тифа и даже чумы были проведены достаточно аккуратно, и успех выглядел вполне убедительно. Но после начала массового выпуска и использования фаговых препаратов эйфория сменилась разочарованием. О том, что такое бактериофаги, как производить, очищать и применять их лекарственные формы, было известно еще очень мало. Достаточно сказать, что по результатам предпринятой в США в конце 1920-х годов проверки во многих промышленных фагопрепаратах собственно бактериофагов вообще не оказалось.

Проблема с антибиотиками

Вторую половину ХХ века в медицине можно назвать «эрой антибиотиков». Однако еще первооткрыватель пенициллина Александр Флеминг в своей нобелевской лекции предупреждал, что устойчивость микробов к пенициллину возникает довольно быстро. До поры до времени антибиотикоустойчивость компенсировалась разработкой новых типов противомикробных лекарств. Но с 1990-х годов стало ясно, что человечество проигрывает «гонку вооружений» против микробов.

Виновато прежде всего бесконтрольное применение антибиотиков не только в лечебных, но и в профилактических целях, причем не только в медицине, но и в сельском хозяйстве, пищевой промышленности и быту. В результате устойчивость к этим препаратам начала вырабатываться не только у болезнетворных бактерий, но и у самых обычных микроорганизмов, живущих в почве и воде, делая из них «условных патогенов».

Такие бактерии комфортно существуют в медицинских учреждениях, заселяя сантехнику, мебель, медицинскую аппаратуру, порой даже дезинфицирующие растворы. У людей с ослабленным иммунитетом, каких в больницах большинство, они вызывают тяжелейшие осложнения.

Неудивительно, что медицинское сообщество бьет тревогу. В прошедшем, 2012 году гендиректор ВОЗ Маргарет Чен выступила с заявлением, предсказывающим конец эры антибиотиков и беззащитность человечества перед инфекционными заболеваниями. Впрочем, практические возможности комбинаторной химии – основы фармакологической науки – далеко не исчерпаны. Другое дело, что разработка противомикробных средств – очень дорогой процесс, не приносящий таких прибылей, как многие другие лекарства. Так что страшилки о «супербактериях» – это скорее предостережение, побуждающее людей к поискам альтернативных решений.

Бактериофаги и иммунитет

Поскольку бактериофагов в природе несметное количество и они постоянно попадают в организм человека с водой, воздухом и пищей, то иммунитет их просто игнорирует. Существует даже гипотеза о симбиозе бактериофагов в кишечнике, регулирующем кишечную микрофлору. Добиться какой-то иммунной реакции можно лишь при длительном введении в организм больших доз фагов.

Но таким образом можно добиться аллергии на почти любые вещества. И наконец, очень важно, что бактериофаги недороги. Разработка и производство препарата, состоящего из точно подобранных бактериофагов с полностью расшифрованными геномами, культивированных по современным биотехнологическим стандартам на определенных штаммах бактерий в химически чистых средах и прошедших высокую очистку, на порядки дешевле, чем современных сложных антибиотиков.

Это позволяет быстро приспосабливать фаготерапевтические препараты к меняющимся наборам патогенных бактерий и применять бактериофаги в ветеринарии, где дорогие лекарства экономически не оправданы.

На медицинской службе

Вполне логичным выглядит возрождение интереса к использованию бактериофагов – естественных врагов бактерий – для лечения инфекций. Действительно, за десятилетия «эры антибиотиков» бактериофаги активно служили науке, но не медицине, а фундаментальной молекулярной биологии. Достаточно упомянуть расшифровку «триплетов» генетического кода и процесса рекомбинации ДНК. Сейчас о бактериофагах известно достаточно, чтобы обоснованно выбирать фаги, подходящие для терапевтических целей.

Достоинств у бактериофагов как потенциальных лекарств множество. Прежде всего – это их несметное количество. Хотя изменять генетический аппарат бактериофага тоже намного проще, чем у бактерии, и тем более – у высших организмов, в этом нет необходимости. Всегда можно подобрать что-то подходящее в природе. Речь идет скорее о селекции, закреплении востребованных свойств и размножении нужных бактериофагов.

Это можно сравнить с выведением пород собак – ездовых, сторожевых, охотничьих, гончих, бойцовых, декоративных… Все они при этом остаются собаками, но оптимизированы под определенный вид действий, нужных человеку. Во-вторых, бактериофаги строго специфичны, то есть они уничтожают только определенный вид микробов, не угнетая при этом нормальную микрофлору человека.

В-третьих, когда бактериофаг находит бактерию, которую должен уничтожить, он в процессе своего жизненного цикла начинает размножаться. Таким образом, не столь острым становится вопрос дозировки. В-четвертых, бактериофаги не вызывают побочных эффектов. Все случаи аллергических реакций при использовании терапевтических бактериофагов были вызваны либо примесями, от которых препарат был недостаточно очищен, либо токсинами, выделяющимися при массовой гибели бактерий. Последнее явление, «эффект Герксхаймера», нередко наблюдается и при применении антибиотиков.

Две стороны медали

К сожалению, недостатков у медицинских бактериофагов тоже немало. Самая главная проблема проистекает из достоинства – высокой специфичности фагов. Каждый бактериофаг инфицирует строго определенный тип бактерий, даже не таксономический вид, а ряд более узких разновидностей, штаммов. Условно говоря, как если бы сторожевая собака начинала лаять только на одетых в черные плащи громил двухметрового роста, а на лезущего в дом подростка в шортах никак не реагировала.

Поэтому для нынешних фаговых препаратов нередки случаи неэффективного применения. Препарат, сделанный против определенного набора штаммов и прекрасно лечащий стрептококковую ангину в Смоленске, может оказаться бессильным против по всем признакам такой же ангины в Кемерове. Болезнь та же, вызывается тем же микробом, а штаммы стрептококка в разных регионах оказываются различными.

Для максимально эффективного применения бактериофага необходима точная диагностика патогенного микроба, вплоть до штамма. Самый распространенный сейчас метод диагностики – культуральный посев – занимает много времени и требуемой точности не дает. Быстрые методы – типирование с помощью полимеразной цепной реакции или масс-спектрометрии – внедряются медленно из-за дороговизны аппаратуры и более высоких требований к квалификации лаборантов. В идеале подбор фагов-компонентов лекарственного препарата можно было бы делать против инфекции каждого конкретного пациента, но это дорого и на практике неприемлемо.

Другой важный недостаток фагов – их биологическая природа. Кроме того, что бактериофаги для поддержания инфекционности требуют особых условий хранения и транспортировки, такой метод лечения открывает простор для множества спекуляций на тему «посторонней ДНК в человеке». И хотя известно, что бактериофаг в принципе не может заразить человеческую клетку и внедрить в нее свою ДНК, поменять общественное мнение непросто.

Из биологической природы и довольно большого, по сравнению с низкомолекулярными лекарствами (теми же антибиотиками), размера вытекает третье ограничение – проблема доставки бактериофага в организм. Если микробная инфекция развивается там, куда бактериофаг можно приложить напрямую в виде капель, спрея или клизмы, – на коже, открытых ранах, ожогах, слизистых оболочках носоглотки, ушей, глаз, толстого кишечника – то проблем не возникает.

Но если заражение происходит во внутренних органах, ситуация сложнее. Случаи успешного излечения инфекций почек или селезенки при обычном пероральном приеме препарата бактериофага известны. Но сам механизм проникновения относительно крупных (100 нм) фаговых частиц из желудка в кровоток и во внутренние органы изучен плохо и сильно разнится от пациента к пациенту. Бактериофаги бессильны и против тех микробов, которые развиваются внутри клеток, например возбудителей туберкулеза и проказы. Через стенку человеческой клетки бактериофаг пробраться не может.

Нужно отметить, что противопоставлять применение бактериофагов и антибиотиков в медицинских целях не следует. При совместном их действии наблюдается взаимное усиление противобактериального эффекта. Это позволяет, например, снизить дозы антибиотиков до значений, не вызывающих выраженных побочных эффектов. Соответственно, и механизм выработки у бактерий устойчивости к обоим компонентам комбинированного лекарства почти невозможен.

Расширение арсенала противомикробных препаратов дает больше степеней свободы в выборе методики лечения. Таким образом, научно обоснованное развитие концепции применения бактериофагов в противомикробной терапии – перспективное направление. Бактериофаги служат не столько альтернативой, сколько дополнением и усилением в борьбе с инфекциями.

Автор – и.о. зав.лаб. молекулярной биоинженерии Института биоорганической химии им. Шемякина и Овчинникова РАН

Портал «Вечная молодость» http://vechnayamolodost.ru01.11.2013

www.vechnayamolodost.ru

Бактериофаги, применение в медицине.

Бактериофаги. Применение в медицинской практике.

Бактериофаги - это вирусы бактерий способные специфически проникать в бактериальные клетки, репродуцировать их и вызывать лизис.

Они встречаются везде, где есть бактерии - в почве, воде, кишечном тракте человека. Фагом присущи все биологические особенности, которые свойственны вирусам.

Морфология фагов:

Фаги различаются по форме - нитевидные, сферические, кубические, фаги, имеющие головку и хвостик (напоминают сперматозоид).

По размерам - мелкие, среднего размера и крупные.

Наиболее сложно устроены крупные фаги, состоящие из головки и хвостика. Головка имеет форму икосаэдра. Головка с помощью воротника и зонтика связана с отростком. Внутри отростка есть полый цилиндрический стержень, который сообщается с головкой, с наружи отросток имеет белковый чехол способный к сокращению, хвостовой отросток заканчивается шестиугольной базальной пластиной с короткими шипами, от которых отходят нитевидные структуры фибриллы. В пластинке и шипах содержится лизоцим. Отросток имеет 6 ворсинок, которые обеспечивают плотное прикрепление фага к бактериальной клетка. Могут встречаться фаги с несокращающимся чехлом, фаги с короткими отростками, фаги с аналогом отростка, фаги без отростка.

Химический состав:

Фаги содержат один тип нуклеиновой кислоты ДНК или РНК и белок. Молекула НК, скручена в спираль и находится в головке фага.

Резистентность фагов: фаги переносят температуру 50-60°С. Выдерживают замораживание, гибнут при температуре 70С°. На них не действуют такие яды как цианид, фторид, а также хлороформ и фенол. Фаги хорошо сохраняются в запаянных ампулах, но они могут разрушаться при кипячении, действии кислот, при УФ - облучении.

Механизм взаимодействия фагов с микробной клеткой:

По взаимодействию различают вирулентные и умеренные фаги.

Вирулентные фаги - они проникают в бактериальную клетку, репродуцируются и вызывают лизис бактерий.

Для фагов с отростком и сокращающимся чехлом имеется ряд особенностей:

Эти фаги адсорбируются на поверхности бактериальной клетки с помощью фибрилл отростка при наличии соответствующих рецепторов. Затем происходит активация фермента АТФ-азы, что приводит к сокращению чехла хвостатого отростка и внедрению полого стержня в клетку. В процессе прокалывания стенок клетки участвует фермент - лизоцим.

ДНК фага проходит через полый стержень отростка и впрыскивается в клетку. Капсид и отросток остаются на поверхности клетки. Затем происходит репродукция белка и нуклеиновой кислоты фага внутри клетки. Следующая стадия заключается в сборке и формирование зрелых частиц фага. Заключительная стадия: лизис клетки и выход зрелых частиц фага из нее. Лизис может проходить как изнутри - происходит разрыв клеточной стенки и выход зрелых фагов во внешнею среду и извне - фаги проделывают в клеточной стенки множество отверстий, через которые вытекает содержимое клетки, при таком лизисе фаг не размножается.

Умеренные фаги - лизируют не все клетки в популяции, с частью клеток вступают в симбиоз, в результате чего ДНК фага встраивается в хромосому клетки. В этом случае геном фага называется - профаг.

Профаг становится частью хромосомы клетки и при её размножении реплицируется синхронно с геномом клетки, не вызывая её лизис и передается потомству.

Явление симбиоза микробной клетки с профагом называется - лизогенией.

А культура бактерий содержащих профаг -лизогенной, это название отражает способность профага самопроизвольно или под действием факторов окружающей среды переходить в цитоплазму и вести себя как вирулентный фаг лизирующий бактерии. При переходе в вирулентную форму умеренный фаг может захватывать часть хромосомы бактериальной клетки и при лизисе перенести в другую.

По спектру действия фаги подразделяются:

1.Поливалентные - лизируют родственные бактерии (сальмонеллезный фаг лизирует только сальмонеллы).

2.Видовые (монофаги) - лизируют бактерии только одного вида.

3.Типоспецифические - избирательно лизируют отдельные варианты бактерий внутри вида (патог. Стафилококк - 33 набора).

Практическое применение:

Препараты фагов применяют для лечения и профилактике инфекций и их диагностики. Действие фагов основано на их строгой специфичности, для получения препарата фага используют производственные штаммы и соответствующие культуры бактерий.

Формы выпуска: жидкие, сухие, в виде таблеток, аэрозолей, свечи. Вводятся в организм парентерально, энтерально и местно. Используют с лечебно - профилактической целью при различных заболеваниях (дизентерии, холеры, различные гнойно - воспалительные заболевания).

Фагодиагностика: принцип диагностики основан на совместном культивировании тест - культур с известными и неизвестными фагами, положительным считается результат при наличии лизиса бактериальной клетки. Лизис может наблюдаться на жидких и плотных питательных средах. На жидких питательных средах, проявляется просветления бактериальной суспензии, а на плотных формируются участки отсутствия роста.

Фаготипирование: определение типового варианта вида с помощью набора типовых фагов. Выпускаются брюшнотифозные фаги, фаги для диагностики холеры, сальмонеллезные фаги, дизентерийные фаги. Фаготипирование необходимо при проведении эпидемиологического анализа заболевания и с целью установления источника и путей передачи. По обнаружению фага судят о содержании соответствующих микроорганизмов.

Фаготерапия и профилактика: при исследовании фагами проводят предварительное определение чувствительности выделенной культуры к диагностическому фагу. Используется для лечения брюшного тифа, дизентерии, сальмонеллезов. Фагопрофилактика проводится в отношении инфекционных заболеваний.

Умеренные фаги используют в генетике.

Дата добавления: 2016-05-25; просмотров: 4452; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПОСМОТРЕТЬ ЕЩЕ:

helpiks.org

89. Значение бактериофагов и их применение в медицине

Лечебные БФ

Комбинированный препараты лечебных БФ

Применение в медицине

Лечебные БФ- альтернатива АМП Лечебные БФ подавляют как чувствительные, так и антибиотикоустойчивые бактерии.

Применение бактериофагов в диагностике и медицине

Виды БФ:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

studfiles.net


Смотрите также



© 2020 "МНОГО ДЕТСТВА" - РЕГИОНАЛЬНАЯ ОБЩЕСТВЕННАЯ ОРГАНИЗАЦИЯ